當(dāng)前位置:首頁(yè) > 科技文檔 > 礦業(yè)工程 > 正文

基于KRB-YOLOv5s的煤矸識(shí)別方法

遼寧工程技術(shù)大學(xué)學(xué)報(bào)(自然科學(xué)版) 頁(yè)數(shù): 8 2024-08-15
摘要: 為解決煤礦高粉塵、低照度、高噪聲與堆疊等復(fù)雜環(huán)境因素導(dǎo)致的煤矸識(shí)別精度低、漏檢與誤檢問(wèn)題,提出一種基于KRB-YOLOv5s算法的煤矸識(shí)別方法。采用K均值聚類(K-means++)算法對(duì)數(shù)據(jù)集進(jìn)行重新聚類,以得到更精準(zhǔn)的錨框參數(shù);在YOLOv5s主干網(wǎng)絡(luò)中引入大核卷積結(jié)構(gòu)重參數(shù)(RepLKNet)網(wǎng)絡(luò),通過(guò)大核卷積架構(gòu)提取目標(biāo)更高層級(jí)的特征信息;在YOLOv5s頸部引入加權(quán)雙向... (共8頁(yè))

開通會(huì)員,享受整站包年服務(wù)立即開通 >
科技文檔
數(shù)學(xué) 力學(xué) 化學(xué) 金融 證券 保險(xiǎn) 投資 會(huì)計(jì) 審計(jì) 園藝 林業(yè) 旅游 體育 物理學(xué) 生物學(xué) 天文學(xué) 氣象學(xué) 海洋學(xué) 地質(zhì)學(xué) 新能源 金屬學(xué) 農(nóng)藝學(xué) 農(nóng)作物 管理學(xué) 領(lǐng)導(dǎo)學(xué) 自然科學(xué) 系統(tǒng)科學(xué) 資源科學(xué) 無(wú)機(jī)化工 有機(jī)化工 燃料化工 化學(xué)工業(yè) 材料科學(xué) 礦業(yè)工程 冶金工業(yè) 安全科學(xué) 環(huán)境科學(xué) 工業(yè)通用 機(jī)械工業(yè) 無(wú)線電子 電信技術(shù) 鐵路運(yùn)輸 汽車工業(yè) 船舶工業(yè) 動(dòng)力工程 電力工業(yè) 農(nóng)業(yè)科學(xué) 農(nóng)業(yè)工程 植物保護(hù) 動(dòng)物醫(yī)學(xué) 教育理論 學(xué)前教育 初等教育 中等教育 高等教育 職業(yè)教育 成人教育 自然地理 地球物理 經(jīng)濟(jì)統(tǒng)計(jì) 農(nóng)業(yè)經(jīng)濟(jì) 工業(yè)經(jīng)濟(jì) 交通經(jīng)濟(jì) 企業(yè)經(jīng)濟(jì) 文化經(jīng)濟(jì) 信息經(jīng)濟(jì) 貿(mào)易經(jīng)濟(jì) 財(cái)政稅收 市場(chǎng)研究 科學(xué)研究 互聯(lián)網(wǎng) 自動(dòng)化 輕工業(yè) 核科學(xué) 服務(wù)業(yè) 石油然氣 服務(wù)業(yè) 野生動(dòng)物 水產(chǎn)漁業(yè) 硬件 儀器儀表 航空航天 武器軍事 公路運(yùn)輸 水利水電 建筑科學(xué) 軟件