光子晶體光纖有很多奇特的性質(zhì)。例如,可以在很寬的帶寬范圍內(nèi)只支持一個(gè)模式傳輸;包層區(qū)氣孔的排列方式能夠極大地影響模式性質(zhì);排列不對(duì)稱的氣孔也可以產(chǎn)生很大的雙折射效應(yīng),這為我們?cè)O(shè)計(jì)高性能的偏振器件提供了可能。
概述
光子晶體光纖(Photonic Crystal Fibers,PCF)又被稱為微結(jié)構(gòu)光纖(Micro-Structured Fibers, MSF),近年來(lái)引起廣泛關(guān)注,它的橫截面上有較復(fù)雜的折射率分布,通常含有不同排列形式的氣孔,這些氣孔的尺度與光波波長(zhǎng)大致在同一量級(jí)且貫穿器件的整個(gè)長(zhǎng)度,光波可以被限制在低折射率的光纖芯區(qū)傳播。
概念的提出
光子晶體的概念最早出現(xiàn)在1987年,當(dāng)時(shí)有人提出,半導(dǎo)體的電子帶隙有著與光學(xué)類似的周期性介質(zhì)結(jié)構(gòu)。其中最有發(fā)展前途的領(lǐng)域是光子晶體在光纖技術(shù)中的應(yīng)用。它涉及的主要議題是高折射率光纖的周期性微結(jié)構(gòu)(它們通常由以二氧化硅為背景材料的空氣孔組成)。這種被談?wù)撝墓饫w通常稱之為光子晶體光纖(PCFs),這種新型光波導(dǎo)可方便地分為兩個(gè)截然不同的群體。第一種光纖具有高折射率芯層(一般是固體硅),并被二維光子晶體包層所包圍的結(jié)構(gòu)。這些光纖有類似于常規(guī)光纖的性質(zhì),其工作原理是由內(nèi)部全反射(TIR)形成波導(dǎo);相比于傳統(tǒng)的折射率傳導(dǎo),光子晶體包層的有效折射率允許芯層有更高的折射率。因此,重要的是要注意到,這些我們所謂的內(nèi)部全反射光子晶體光纖(TIR-PCFs) ,實(shí)際上完全不依賴于光子帶隙( PBG )效應(yīng)。與TIR-PCFs截然不同的另一種光纖,其光子晶體包層顯示的是光子帶隙效應(yīng),它利用這種效應(yīng)把光束控制在芯層內(nèi)。這些光纖(PBG-PCFs)表現(xiàn)出可觀的性能,其中最重要的是能力控制和引導(dǎo)光束在具有比包層折射率低的芯層內(nèi)傳播。相比而言,內(nèi)部全反射光子晶體光纖(TIR-PCFs)首先是被制造出來(lái)的,而真正的光子帶隙傳導(dǎo)光纖(PBG-PCFs)只是在近期才得到實(shí)驗(yàn)證明。
光子晶體光纖分類
光子晶體光纖按照其導(dǎo)光機(jī)理可以分為兩大類:折射率導(dǎo)光型(IG-PCF)和帶隙引導(dǎo)型(PCF)。帶隙型光子晶體光纖能夠約束光在低折射率的纖芯傳播。第一根光子晶體光纖誕生于1996年,其為一個(gè)固體核心被正六邊形陣列的圓柱孔環(huán)繞[1]。這種光纖很快被證明是基于內(nèi)部全反射的折射率引導(dǎo)傳光。真正的帶隙引導(dǎo)光子晶體光纖誕生于1998年[2]。帶隙型光子晶體光纖中,導(dǎo)光中心的折射率低于覆層折射率??招墓庾泳w光纖(Hollow-core PCF,HC-PCF)是一種常見的帶隙型光子晶體光纖。光子晶體光纖主要通過(guò)堆疊的方式拉制而成,有些情況下會(huì)使用硬模(die)來(lái)輔助制造
折射率導(dǎo)光型光子晶體光纖特性及應(yīng)用
折射率引導(dǎo)型光子晶體光纖具有無(wú)截止單模特性 、大模場(chǎng)尺寸 /小模場(chǎng)尺寸和 色散可調(diào)特性(調(diào)節(jié)d,Λ等,無(wú)須摻雜)等特性。被廣泛應(yīng)用于色散控制 (色散平坦,零色散位移可以到800nm),非線性光學(xué) (高非線性,超連續(xù)譜產(chǎn)生),多芯光纖 ,有源光纖器件(雙包層PCF有效束縛泵浦光)和光纖傳感等領(lǐng)域。
帶隙型光子晶體光纖特性及應(yīng)用
空隙帶隙型光子晶體光纖具有易耦合,無(wú)菲涅爾反射,低彎曲損耗、低非線性和特殊波導(dǎo)色散等特點(diǎn)被廣泛應(yīng)用于高功率導(dǎo)光,光纖傳感和氣體光纖等方面。光子晶體光纖的發(fā)展為光纖傳感開拓了廣闊的空間,尤其是在生物傳感和氣體傳感方面為光纖傳感技術(shù)帶來(lái)新的發(fā)展。
內(nèi)容來(lái)自百科網(wǎng)